Detecting Long Connection Chains of Interactive
Terminal Sessions

Kwong H. Yung

Stanford University Statistics Department
390 Serra Mall; Stanford CA 94305-4020; USA
khyung@stat.stanford.edu

Abstract. To elude detection and capture, hackers chain many
computers together to attack the victim computer from a distance.
This report proposes a new strategy for detecting suspicious remote
sessions, used as part of a long connection chain. Interactive terminal
sessions behave differently on long chains than on direct connections.
The time gap between a client request and the server delayed ac-
knowledgment estimates the round-trip time to the nearest server.
Under the same conditions, the time gap between a client request
and the server reply echo provides information on how many hops
downstream the final victim is located. By monitoring an outgoing
connection for these two time gaps, echo-delay comparison can identify
a suspicious session in isolation. Experiments confirm that echo-delay
comparison applies to a range of situations and performs especially well
in detecting outgoing connections with more than two hops downstream.

Keywords: Stepping stone, connection chain, intrusion detection, com-
puter security, network security, network protocol, terminal session, de-
layed acknowledgment, reply echo, echo delay.

1 Introduction

Network security and intrusion detection have become important topics of ac-
tive research [T[45]3]. As the use of the Internet becomes more common and
widespread, so have network attacks and security breaches. Because the growing
number of network attacks is ever more costly, network security and intrusion
detection now play a crucial role in ensuring the smooth operation of computer
networks.

1.1 Motivation

A skilled computer hacker launches attacks from a distance in order to hide his
tracks. Before launching an actual attack with noticeable consequences, a skilled
hacker will break into many computers across many political and administra-
tive domains, to gather computer accounts. With access to multiple computer

A. Wespi, G. Vigna, and L. Deri (Eds.): RAID 2002, LNCS 2516, pp. 1-{16] 2002.
© Springer-Verlag Berlin Heidelberg 2002

2 K.H. Yung

-m—-m+1—...—-1—0—1 —...—n—-1—n

Fig. 1. Typical connection chain. Relative to stepping stone 0, machines —m, —m +
1,...,—1 are upstream and machines 1,2,...,n are downstream.

accounts, the hacker can chain these computers through remote sessions, using
the intermediate computers in the chain as stepping stones to his final victim.

Figure [l shows a typical connection chain. Computer —m attacks computer
n, via stepping stones —m+1, —m—+2,...,0...,n—2,n—1. Since the logs of the
final victim n traces back only to the nearest stepping stone n—1, the originating
point —m of the attack cannot be determined without logs from the upstream
stepping stones. Although the originating point used by the hacker may be found
through repeated backtrace, this process is slow and complicated because the
stepping stones belong to different political and administrative domains and
often do not have logs readily available. Even when the originating attack point
is found after costly investigation, the hacker will have already left and eluded
capture.

This report presents a simple technique to detect interactive terminal sessions
that are part of long connection chains. Once an outgoing session is found to
have many hops downstream, the server machine can terminate the outgoing
connection, to avoid being used as a stepping stone in the long connection chain.
Moreover, the suspicious outgoing terminal session is useful as a basis for finding
other sessions on the same chain.

1.2 Previous Approaches

Staniford-Chen and Heberlein [8] introduced the problem of identifying connec-
tion chains and used principal-component analysis to compare different sessions
for similarities suggestive of connection chains. Because the packet contents were
analyzed, the technique did not apply to encrypted sessions.

Later, Zhuang and Paxson [10] formulated the stepping stones problem and
proposed a simpler approach to finding two correlated sessions, part of the same
connection chain. By using only timing information of packets, the technique
also applied to encrypted sessions.

Both [§] and [10] aim to match similar session logs, indicative of connection
chains. Unless sessions on the same connection chain are in the same pool of
collected sessions, however, this approach fails to identify suspicious sessions.
For example, [10] analyzed logs from a large subnet at UC Berkeley. A hacker
initiating an attack from a computer on the subnet would not be detected unless
his chain connects back into the subnet.

The strategy of grouping similar sessions also inadvertently detects many be-
nign, short connection chains because legitimate users often make two or three
hops to their final destinations. For example, the Stanford University database

Detecting Long Connection Chains of Interactive Terminal Sessions 3

research group has one well-protected computer that allows incoming connec-
tions only from trusted computers on the Stanford University network. To con-
nect to this protected machine, an off-campus user must connect via another
computer on the campus network. Because restrictions on incoming connections
are quite common in heavily protected networks, short connection chains are
often necessary and harmless.

1.3 New Strategy

This report presents an alternative strategy for identifying connection chains.
Because sessions on a long chain behave differently than sessions on a direct
connection, a suspicious session can be detected in isolation without finding
other similar sessions on the same connection chain. The proposed technique
makes use of delayed-acknowledgment packets, response signals found in typical
protocols for interactive terminal sessions, such as telnet, rlogin, and secure shell.

Like [10], echo-delay comparison, the technique proposed here, relies only on
timing information of packets and so applies equally well to encrypted sessions.
Rather than comparing sessions in a large pool, echo-delay comparison operates
on a single session and thus solves the shortcomings of [8] and [10]. A suspicious
session that is part of a long connection chain can be identified even without
finding another correlated session.

Clearly many factors determine the behavior of a connection, including the
network, the machine, the user, and the session transcript. Therefore, isolat-
ing the distinctive properties of sessions in long connection chains is extremely
difficult. Yet research in this strategy is worthwhile because looking for similar
sessions from a large pool has many inherent drawbacks. Of course, these two
strategies are not mutually exclusive but rather complementary.

To balance out the many uncontrolled factors in a connection, echo-delay
comparison relies on the logistics of interactive terminal sessions. Because details
of specific protocols involved are used, echo-delay comparison does not apply to
all types of connections. Nevertheless, the technique is quite simple and can be
extended to handle related protocols.

1.4 Elementary Solutions

The original Internet protocols were not designed with security as the main ob-
jective. Under the shield of anonymity offered by the Internet, malicious users
can attack many computers remotely. Although the prevention and detection of
attacks are now important, the widespread use of older protocols is difficult to
change because the global connectivity of the Internet often requires compatibil-
ity with older software. Upgrading the vast number of computers on the Internet
proves to be nearly impossible.

Perhaps the simplest way to prevent connection chains from forming is to
forbid all incoming sessions from executing any outgoing terminal sessions. Some
servers indeed do adopt this policy and forbid most outgoing connections. Yet
implementing such a strict policy severely limits legitimate users.

4 K.H. Yung

Any policy blindly disabling outgoing connections is too restrictive in most
settings because there are many legitimate reasons to connect via a short chain.
On many networks, users are allowed external connections only through a dedi-
cated server, which is heavily protected and closely monitored. So to connect to
an outside host, users must connect via the dedicated server. In this case, the
gateway server cannot blindly forbid outgoing connections.

Legitimate computer users often use short connection chains to get from one
host to another. Malicious hackers generally use long connection chains to cover
their tracks before executing an attack. To protect a machine from being used
as a stepping stone in a long chain, a reasonable policy would be to terminate
sessions that continue multiple hops downstream.

1.5 Outline of Report

Following this introduction, Section[2 provides a brief background of the network
signals sent during an interactive terminal session between a client and a server
in a direct connection. Section [3] then explains the dynamics of a connection
chain and introduces two time gaps useful for detecting long connection chains.
Next, Section [presents the mathematics for calculating and comparing the two
time gaps. Afterwards, Section [l presents two sets of experiments used to test
the proposed technique. Towards the end, Section [fldiscusses the advantages and
limitations of the ideas proposed in this report. Finally, Section [7] summarizes
this report’s main conclusions.

2 Background

By comparing its incoming sessions with its outgoing sessions, a machine can de-
termine that it is being used as a stepping stone in a connection chain. Standard
protocols for remote sessions do not provide information about the length of
the connection chain. So in isolation, the machine cannot in principle determine
whether it is being used as part of a long chain or just a short chain.

2.1 Reply Echo

In most client implementations of interactive terminal sessions, each individual
character typed by user will initiate a packet sent from the client to the server.
Once the server receives the character packet, it usually echoes the character
back to the client, instructing the client to display the typed character on the
client screen. This reply echo is the typical response of the server to a non-special
character from the client.

When the user types a carriage return, the carriage return received at the
server usually triggers the server to execute a special command. After executing
the command, the server then sends back command output. Figure P]illustrates
a typical exchange between a client and a server on a direct connection.

Detecting Long Connection Chains of Interactive Terminal Sessions 5

client machine 0 server machine 1

time

return]

[output

TAVAY;

0

Fig. 2. Interactive session on direct connection. Client 0 sends the 1s command to
server 1 and receives back the directory listing. The vertical time axis is not drawn to
scale.

2.2 Delayed Acknowledgment

Most often, the server responds soon enough with a nonempty packet, which also
functions to acknowledge the client request. If the requested command requires
a long execution time, then the server times out and sends a so-called delayed
acknowledgment. This delayed-acknowledgment packet contains no content but
signals to the client that the server indeed received the client request. Thus, the
delayed acknowledgment functions to keep the conversation between the client
and the server alive, at the expense of sending an empty packet. The server
sends a delayed acknowledgment only when it cannot send a nonempty response
in time. The server implementation determines the actual delay tolerance before
a delayed acknowledgment is sent from the server to client.

Similarly, when the server sends a nonempty packet to the client, the client
must acknowledge the server. Usually this acknowledgment to the server is sent
by the client along with the next character packet. If the user is slow to type the
next character, however, the client times out and sends a delayed acknowledg-
ment to the server. The client implementation determines the delay tolerance
before a delayed acknowledgment is send from the client to the server.

6 K.H. Yung

3 Theory

A machine used as a stepping stone in a connection chain only knows about its
incoming and outgoing sessions. Typically the stepping stone only passes the
packet information from its client onto its server. In the Figure[d], the stepping
stone 0 acts as a server to receive the incoming connection from upstream client
machine —1. The stepping stone 0 then acts as a client to forward the outgoing
connection onto downstream machine 1. This propagation of signals starts from
the very first originating client —m to the final victim destination n.

After the final victim n receives the packet and executes the command, the
output from n is then forwarded back to the originating client —m in a similar
manner. The intermediate stepping stones —m + 1,—m +2,....,n —2,n — 1
act mainly as conduits to pass the packets between —m and n. Along the way,
packets may be fragmented or coalesced. Moreover, packets may be lost and
retransmitted. Because human typing generates character packets separated by
relatively large time intervals, character packets are generally not coalesced.

3.1 Interactive Terminal Sessions

Protocols for standard interactive terminal sessions do not provide information
about an outgoing connection beyond the first hop. So there is no certainty about
how many additional hops an outgoing connection will continue downstream. In
this scenario, the client machine only communicates with the nearest server
one hop downstream and does not know about additional servers several hops
downstream.

After sending out a character packet to the server, the client waits for a re-
ply echo from the server. If the final victim machine is many hops downstream
from the client, then the nearest server must forward the character packet down-
stream. Upon receiving the character packet, the final victim then sends the reply
echo to the client via the client’s nearest server. To the client, the reply echo
appears to come from the nearest server.

3.2 Dynamics of Connection Chains

In a connection chain with many hops downstream, there is a long time gap
between the client request and the server reply echo because the nearest server
must forward the client request to the final victim and then pass the reply echo
back to the client. A long delay between the client request and the server reply
echo also results if the client and the nearest server are separated by a noisy
connection or if the server is just slow. Consequently, a long echo delay alone is
not sufficient to suggest that there are many hops downstream.

As soon as the nearest server receives the client request, the nearest server
forwards the request. If the nearest server cannot pass the reply echo from the
final victim back to the client in time, the nearest server sends a delayed acknowl-
edgment to the client in the meantime. So if there are many hops downstream
of the nearest server, the client will first receive the delayed acknowledgment

Detecting Long Connection Chains of Interactive Terminal Sessions 7

machine 0 1 2 3
tq 0
\
1
[ack] \
e
ta 0 2
[ack] \
s
1 3

time 2

le 0

Fig. 3. Interactive session on connection chain. Client 0 issues a character packet con-
taining letter [. Downstream servers 1 and 2 forward the packet to the final victim 3.
After executing the packet, the final victim 3 sends the reply echo back to the client
0, via the stepping stones 1 and 2. In the above scenario, client 0 logs three packets,
at times t4,tq, and te.

from the nearest server before receiving the reply echo. Figure B illustrates the
dynamics of a connection chain in the simplest scenario.

3.3 Two Time Gaps

In the simplest scenario, a client sending out a character packet can record three
different signals at three points in time,

ty < ta < te. (1)

Here t, is the time of character request sent from the client, ¢, is the time of
delayed acknowledgment received from the server, and t. is the time of reply
echo received from the server. All three times refer to when a packet leaves or
arrives at the client. Figure[3 illustrates these three time points.

The delayed-acknowledgment gap ¢, — t, provides an overestimate of the
travel time between the client and the nearest server. The reply-echo gap t. —t,
provides an estimate of the travel time between the client and the final victim.

8 K.H. Yung

The difference between these two gaps provide an estimate of the number of
additional hops downstream beyond the nearest server.

4 Analysis

In encrypted connections, as with secure shell, the packet contents are obfus-
cated and cannot be compared. Thus, delay times cannot be calculated easily
by matching a character packet to its reply echo. Any technique that applies
equally well to encrypted connections, therefore, cannot rely on the packet con-
tent. The analysis technique described below, by design, applies to interactive
terminal sessions, including telnet, rlogin, and secure shell.

4.1 Reducing Network Logs

After ignoring the packet content, the communication between the client machine
and the server machine is reduced to a sequence X = (z1,z2,...,%;,...) of
packets recorded at machine 0. Let ¢; denote the time of packet x;, as recorded
at machine 0. Let o; denote the issuing host of packet z;. Here o, = 0 if packet
x; is sent from client 0 to server 1, and o; = 1 if packet x; is sent from server 1
to client 0.

The calculations described below provide estimates of the time gaps instead of
the exact values. The packet content is not used in these simplified calculations.
Instead, packet header provided the necessary information: the logging time, the
issuing host, the receiving host, the port numbers, and the packet flags.

4.2 Estimating Gap of Reply Echo

The gap t. —t, between the client request and the server reply echo is estimated
by considering only nonempty packets, essentially those packets whose flags are
not delayed-acknowledgment flags. Define (z;,) = (x; : x; nonempty) as the
subsequence of packets with nonempty content. Then the set

E(X) = {tik+1 —ti, (Oik’oik+1) = (07 1)} (2)

captures all the gaps for a (0,1)-transition in the packet sequence X.

Certain (0,1)-transitions correspond to the server execution of a client com-
mand. Other (0,1)-transitions correspond to the reply echoes to the client’s
single-character packets. Because a user can type a short burst of characters
before the first character is echoed back, a (0,1)-gap generally measures the
time between a character, followed by the server reply echo to an earlier charac-
ter in the burst of characters typed. The set E of (0,1)-gaps include both long
command-execution gaps and also include short gaps for reply-echo lags. Thus,
the distribution (0,1)-gaps in E has wide variance and skew.

Detecting Long Connection Chains of Interactive Terminal Sessions 9

4.3 Gap of Delayed Acknowledgment

The gap t,—t, between the client request and the server delayed acknowledgment
is calculated by considering the sequence of all packets. Delayed-acknowledgment
packets from the server to the client is easy to identify from the packet header.
Each such delayed acknowledgment can be matched to the most recent nonempty
packet from the client. More precisely, let a; be the gap between packet 7 and
its most recent nonempty packet from the client, defined as

a; = min{t; — t; : <1i,0; = 0,2; nonempty} (3)
=t; — ty, (4)
where [i] = max{l < i : o = 0,z; nonempty}. Then the calculated set A of

delayed-acknowledgment gap is
A(X) ={a; : 0; = 1, z; delayed acknowledgment}. (5)

This distribution of these delayed-acknowledgment gaps in A tends to be
sharply focused, compared the distribution of (0,1)-gaps in E. In any case,
a(X) = max A(X), the maximum of the delayed-acknowledgment gaps in A,
provides an over-estimate the round-trip time between the client and the server.

4.4 Comparison of Delay Gaps

Because the set E of (0,1)-gaps contains many different types of gaps, the dis-
tribution of these (0,1)-gaps depend on many factors. In general though, if there
are many slow connections downstream, then the (0,1)-gaps tend to be large.
Comparing the maximum delayed-acknowledgment gap « to the distribution of
(0,1)-gaps in F provides insight into the connections downstream.

A simple comparison of « to E is the quantile quan(E, «) of o with respect
to E. This quantile is robust estimate of how large E is compared to «. If the
downstream delay is large, then quan(FE, o) would be small.

5 Results

Experiments under a variety of settings were conducted to test the technique
proposed in this report. The author had root access to one machine at Stanford
University and user access to many remote machines. Connection chains were
tested on these accounts, with different numbers and orderings of computers. All
the results presented here use the secure shell protocol for the connections.

5.1 Experimental Setting

The author’s machine ST ran the Red Hat 7.2 distribution of Linux. This logging
machine used Snort [7] 1.8.3 to collect network packet dumps for incoming and
outgoing connections.

10 K.H. Yung

Most of the remote machines were located throughout the US, and several
were located in Europe. They ran a variety of operating systems, including Linux,
FreeBSD, Solaris, VMS, and S390. All of them supported incoming and outgoing
terminal sessions, with support for secure shell, either version 1 or version 2.

Each logged session lasted between one to ten minutes. In these experiments,
the network dumps were not analyzed online but after the experiments were
completed. The simple analysis on the network packet dumps, however, could
have been performed in an online setting.

In all experimental setups, the logging machine ST acted as a client 0 to
the nearest server 1. Simple one-pass online algorithms were used to calculate
the two delay gaps from connection between the logging client and the nearest
server.

5.2 Experimental Results

Echo-delay comparison proved useful under many situations, as confirmed by
many experiments. Two different sets of experimental results are reported here.
Both sets used the machine ST to record network logs. In the first set, the
recording machine was a stepping stone in the connection chain. In the second
set the recording machine was the originating point of the chain.

5.3 Recording on Stepping Stone

In this set of experiments, each connection chain had a topology of the form
-1 —0-—1— ... — n, where machine 0 refers to the recording machine
ST. The length of the chain and the identity of the machines varied. The same
sequence of commands were executed in all the sessions. To control for variability
in network congestion, all the experiments were conducted in the same time
frame, within one hour.

Table[Mshows three groups, each of three chains. There are nine network logs,
corresponding to the nine chains presented. Because the outgoing connection
from client 0 is ST-rs, Essentially same delayed-acknowledgment gap « is used
for all nine chains. The distributions F of (0,1)-gaps differ.

The second group of three chains replicates the first group of three chains.
Yet the comparison quantiles differ slightly because there are still uncontrolled
variability between the two replications.

In the third group of three chains, the quantile quan(E, «) is not monoton-
ically increasing as the chain length decreases. On the other hand, the quan-
tile quan(F, 2«) is better-behaved. The three groups also seem more consistent
on the quantile quan(FE, 2«r). Apparently, the quan(FE, 2a/) feature discriminates
more sharply the three chain lengths.

By rejecting chains whose quan(FE, 2«) is less than 0.95, the two long chains
of each group would be identified as suspicious. Decreasing this fraction would be
less restrictive but also allow more suspicious chains. In any case, the rejection

Detecting Long Connection Chains of Interactive Terminal Sessions 11

Table 1. Quantile behavior under varying topology but identical session transcript. In
each chain, the leftmost initial denotes the originating point, and the rightmost initial
denotes the final victim. All network logs were recorded on machine ST. All sessions
executed the same sequence of commands, using only the simple command line under
character mode.

quan(FE, o) quan(F,2«a) connection chain

0.46 0.73 e5 - ST —rs — el3 = zi — eld — vim — elb
0.63 0.91 eb - ST —rs — el3 — zi — eld

0.77 1.00 eb = ST — rs — el3

0.48 0.61 eb - ST —rs —» el3 = zi — eld —» vin — elb
0.54 0.80 eb = ST — rs — el3 — zi — el4d

0.69 1.00 eb — ST — rs — el3

0.34 0.57 eb = ST —-rs —eb — zi — e7 — vin — e8
0.63 0.88 eb - ST - rs — eb — zi — e7

0.57 1.00 eb - ST — rs — €6

region S of suspicious chain, based on the quan(F, 2a) value alone, would have
the form

S(c) = {packet sequence X : quan(E(X),2a(X)) < ¢}, (6)

where 0 < ¢ < 1 is an adjustable parameter. A larger value of ¢ enlarges the
rejection region S and generally results in more false alarms.

5.4 Recording on Originating Point

In this second set of experiments shown in Table 2] the recording machine ST
acted as the originating point in all the chains. The length of the chain varied,
but the ordering of machines remained fixed. The session transcript also varied
substantially. To control for variability in network congestion, all the experiments
were conducted in the same time frame, within two hours.

The bar graph in Figure Hl plots the quan(FE,2«) values versus the chain
length for the 14 sessions in Table 2l On the whole, the quantile quan(FE, 2«)
decreases as the chain length increases. Deviations from the general trend are
expected because these sessions do not have a common transcript.

In this set of experiments, not only does the chain length vary, but so does
the session transcript. Using rejection region based on the quan(FE,2«) alone,
as in Equation B gives mixed results. Figure Bl shows the ROC curves for three
different tests. To test for more than two hops downstream, the rejection region
of the form in Equation Bl provides a perfect test. To test for more than five
hops downstream or to test for more than nine hops, however, the results are
uniformly worse.

In test samples with variability in session transcript, the simple rejection re-
gion based on quan(FE, 2«) alone still works reasonably well, especially in testing

12 K.H. Yung

Table 2. Quantile behavior under varying session transcripts but fixed topology. The
14 logs were all recorded from the original point ST. The session transcripts involved
shell commands and more complicated commands within the EMACS editor. Each log
had a different session transcript.

quan(FE, 2a)

0.40
0.36
0.28
0.39
0.42
0.44
0.21
0.68
0.57
0.45
0.70
0.62
0.92
0.99

quantile

0.9

0.8

0.7

0.6

o
0

connection chain

ST—e2—zi—e3—cp—ed—ls—sp—eb—cs—e7—xb—df—bs—e8
ST—e2—zi—e3—cp—ed—ls—sp—eb—cs—e7—xb—df—bs
ST—e2—zi—e3—cp—ed—ls—sp—eb—cs—e7—xb—df
ST—e2—zi—e3—cp—ed—ls—sp—eb—cs—e7—xb
ST—e2—zi—e3—cp—ed—ls—sp—reb—rcs—e7
ST—e2—zi—e3—cp—ed—ls—sp—eb—rcs
ST—e2—zi—e3—cp—ed—ls—sp—eb
ST—e2—zi—e3—cp—ed—ls—sp
ST—e2—zi—e3—cp—ed—ls

ST—e2—zi—e3—cp—ed

ST—e2—zi—e3—cp

ST—e2—zi—e3

ST—e2—zi

ST—e2

Quantile versus Chain Length

1 2 3 4 5 6 7 8 9 10 1 12 13 14
chain length

Fig. 4. Plot of quan(F, 2a) versus chain length.

Detecting Long Connection Chains of Interactive Terminal Sessions 13

ROC curves

power: fraction of long chains detected
o © I I3 I3 ° IS4
n w s (&) [~ o
T T T T T T T
Il Il Il Il Il Il Il

o©
o
T
I

—— 2 hops allowed
— — 5 hops allowed
9 hops allowed ||

I I

o
T

1 1 1 1 1 1 1 1 I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
error: fraction of short chains detected

Fig. 5. ROC curves for rejection region S(c).

for more than two hops downstream. As a test for more than five hops down-
stream or as a test for more than nine hops downstream, the performance of the
simple rejection region based on quan(E, 2«) alone deteriorates.

When there are many hops downstream, the variability introduced by the
machines downstream adds considerable complication. As expected, tolerance for
a big number of downstream hops is more difficult to implement than tolerance
for a small of downstream hops. In practice, the low tolerance policy that rejects
sessions with more than two hops downstream is more useful and realistic.

6 Discussion

The rejection region in Equation [classifies an outgoing connection as having
too many hops downstream if the outgoing connection has a packet sequence X
whose 2a(X) value is too small compared to the gaps in set E(X). To test for
an outgoing connection with more than two hops, experiments indicate that the
using cut-off parameter ¢ = 0.9 would give reasonably accurate results without
high false alarms.

The experiments used a machine on the Stanford University network as the
logging machine. Although a wide range of experiments under different settings
showed that the cut-off parameter ¢ = 0.9 performed well, machine and network
properties can vary considerably. For best results, each deployment can train
on its own machines and networks to determine the optimal cut-off to meet
prescribed requirements for accuracy and precision.

14 K.H. Yung

6.1 Accuracy and Precision

Most intrusion-detection techniques suffer from too many false positives [4]. Be-
cause there is a wide range of network attacks, general intrusion-detection sys-
tems are difficult to design. By narrowing the scope of detection to special types
of attacks, the number of false attacks can be lowered considerably, [2] for ex-
ample.

The problem of connection chains is well-defined and narrow enough to be
considered as a specific attack. Yet, earlier techniques [8[10] for detecting step-
ping stones identify many harmless, short chains common in practice. Echo-delay
comparison proposed here specifically addresses these logical false positives and
detects only connection chains with many hops downstream.

On the other hand, echo-delay comparison does not detect the number of
upstream hops in connection chain. From the viewpoint of the recording machine,
only the nearest upstream client is known. If the recording machine is a stepping
stone in a long connection chain but is only one single hop away from the final
victim, then the session will not trigger any warning because there are not many
hops downstream. This logical false negative will be addressed in future work.
Because delayed acknowledgments are sent in both directions, an extension of
the current work may prove useful in detecting many hops upstream.

6.2 Hacker Intervention

In the ever-raging battle between hackers and intrusion-detection systems, intel-
ligent hackers always search for new ways to elude detection. Echo-delay com-
parison and previous approaches [8/10] are all susceptible to hacker intervention.
In fact, in a theoretical sense [6], any intrusion detector relying solely on network
logs can be circumvented by carefully manipulating network signals.

The time gap between the client request and the delayed acknowledgment
of the nearest server provides an overestimate of the travel time for one hop
downstream. Since not all downstream hops are equally noisy, two problems
may arise. A fast connection between the client and the nearest server may
over-amplify the slow hops downstream. This configuration does not benefit the
hacker trying to avoid detection though.

Likewise, a slow connection between the client and the nearest server may
mask the fast hops downstream. If the detector is used at its optimal settings, to
detect more than two hops downstream, then there is minimal leeway for hiding
many hops behind the slow first connection. Hiding many quick connections on
machines within close proximity would defeat the purpose of using a connection
chain.

A knowledgeable hacker can manipulate the network signals. To elude detec-
tion, the hacker may delay and suppress the delayed-acknowledgment signal and
the reply-echo signal. Because the analysis in this paper uses aggregate statistics,
targeting a few signals will not thwart the detector. Manipulating many signals
simultaneously without adversely affecting the dynamics of the connection chain
would be difficult even for the skilled hacker.

Detecting Long Connection Chains of Interactive Terminal Sessions 15

7 Summary

Echo-delay comparison monitors an outgoing connection to estimate two impor-
tant time gaps. First, the gap between the client request and the server delayed
acknowledgment estimates the round-trip travel time between the client and the
server. Second, the gap between the client request and the server reply echo
estimates the how far downstream the final victim is away. Together these two
time gaps provide a simple test to identify a session whose final victim is many
hops downstream.

Unlike previous approaches for detecting stepping stones, echo-delay compar-
ison works in isolation, without matching for similar sessions on the same con-
nection chain. Moreover, this new strategy will allow benign, short connection
chains common in practice. Echo-delay comparison makes use network signals
found in interactive terminal sessions, such as telnet, rlogin, and secure shell.
Experiments demonstrate that the technique is effective under a wide range of
conditions and performs especially well in identifying sessions with more than
two hops downstream.

Acknowledgments. This research project was funded in part by the US De-
partment of Justice grant 2000-DT-CX-KO001. Jeffrey D. Ullman of the Stanford
University Computer Science Department introduced the author to the field
of intrusion detection and offered invaluable advice throughout the past year.
Jerome H. Friedman of the Stanford University Statistics Department provided
important feedback in several discussions. The author is grateful for their help
and extends his delayed acknowledgment, long overdue.

References

1. Stefan Axelsson. “Intrusion Detection Systems: A Survey and Taxonomy.” Tech-
nical Report 99-15, Department of Computer Engineering, Chalmers University,
March 2000.

2. Robert K. Cunningham, et al. “Detecting and Deploying Novel Computer Attacks
with Macroscope.” Proceeding of the 2000 IEEE Workshop on Information Assur-
ance and Security. US Military Academy, West Point, NY, 6-7 June, 2001.

3. Harold S. Javitz and Alfonso Valdes. “The NIDES Statistical Component: De-
scription and Justification.” Technical report, Computer Science Laboratory, SRI
International. Menlo Park, California, March 1993.

4. Richard P. Lippmann, et al. “Evaluating Intrusion Detection Systems: The 1998
ARPA Off-Line Intrusion Detection Evaluation.” Proceedings of DARPA Infor-
mation Survivability Conference and Ezposition. DISCEX ’00, Jan 25-27, Hilton
Head, SC, 2000. http://www.1l.mit.edu/IST/ideval/index.html

5. Peter G. Neumann and Phillip A. Porras. “Experience with EMERALD to Date.”
1st USENIX Workshop on Intrusion Detection and Network Monitoring, pages
73-80. Santa Clara, California, USA, April 1999.

6. Thomas H. Ptacek and Timothy H. Newsham. “Insertion, Evasion, and Denial
of Service: Eluding Network Intrusion Detection.” Secure Networks, Inc., January
1998. http://wuw.aciri.org/vern/PtacekNewsham-Evasion-98.ps

16

10.

K.H. Yung

Martin Roesch. “Snort: Lightweight intrusion detection for networks.” 13th Sys-
tems Administration Conference (LISA’99), pages 229-238. USENIX Associations,
1999.

Stuart Staniford-Chen and L. Todd Heberlein. “Holding Intruders Accountable on
the Internet.” Proceedings of the 1995 IEEE Symposium on Security and Privacy,
pages 39-49. Oakland, CA, May 1995.

W. Richard Stevens. TCP/IP Illustrated Volume 1: The Protocols. Addison-Wesley:
Reading, Massachusetts, 1994.

Yin Zhang and Vern Paxson. “Detecting stepping stones.” Proceedings of 9th
USENIX Security Symposium. August 2000.

	Introduction
	Motivation
	Previous Approaches
	New Strategy
	Elementary Solutions
	Outline of Report

	Background
	Reply Echo
	Delayed Acknowledgment

	Theory
	Interactive Terminal Sessions
	Dynamics of Connection Chains
	Two Time Gaps

	Analysis
	Reducing Network Logs
	Estimating Gap of Reply Echo
	Gap of Delayed Acknowledgment
	Comparison of Delay Gaps

	Results
	Experimental Setting
	Experimental Results
	Recording on Stepping Stone
	Recording on Originating Point

	Discussion
	Accuracy and Precision
	Hacker Intervention

	Summary

